触媒技術の動向と展望 創刊20周年記念企画別冊英語版

「Special Edition for the 20th Anniversary of Publication of “Annual Survey of Catalytic Science and Technologies” by the Catalysis Society of Japan」のご案内

触媒学会では1993年度から事業の一環として、「触媒技術の動向と展望」と題した年鑑の出版を行っております。

創刊20周年記念号の2012年度版では、金属触媒、酸化物触媒、生体・錯体触媒、重合触媒、キャラクタリゼーション、光触媒、石油化学、高分子合成、バイオベース化学の九つの触媒分野における研究開発の歴史と将来展望をまとめた特集を掲載しております。

この特集の英語版ならびに大学・高専・国公立研究機関における研究活動(研究者総覧)の英語版を別冊として製本し、販売いたします。

この別冊は海外の触媒研究者に日本における触媒の研究動向、研究者を紹介する際にもお役立ていただける内容となっています。また、大学院にて触媒研究を行っている院生等にとっても必読の書となっています。

つきましては本別冊の有用性をご賢察の上、ぜひご購入いただきますようにご案内申し上げます。なお、5冊以上まとめてご購入いただけます場合は割引価格を準備いたしていますので事務局までお問い合わせください。

「創刊20周年記念企画別冊英語版」（379頁）価格6,000円（消費税込）

ご購入は、「住所、会社名及び部署名、お名前、電話番号、FAX番号、E-mailアドレス」を明記のうえ、触媒学会事務局までE-Mail（catsj@pb3.so-net.ne.jp）またはFAX（03-3291-8225）にてお申し込みください。

Special Edition for the 20th Anniversary of Publication of “Annual Survey of Catalytic Science and Technologies” by the Catalysis Society of Japan

1. Contributions to the Special Edition

1.1 Prosperous future of catalysis: Greetings from the President
 Tokyo Metropolitan University Masatake Haruta 3

1.2 A submission to the 20th anniversary commemorative edition
 The Catalyst Manufacturers Association, Japan Yūjiro Saito 5

1.3 The history and development of metallic catalysts
 Industrial Catalyst Laboratory Takashiro Muroi 8

1.4 Complication towards evolution in the history of oxide catalysts for selective oxidation
 Catalyst Research Center, Hokkaido University Wataru Ueda 18

1.5 Development of homogeneous catalysis and biocatalysis over past two decades
 Chemical Resources Laboratory, Tokyo Institute of Technology Munetaka Akita 26

1.6 Recent trends in olefin polymerization catalyst development
 Mitsui Chemicals Singapore R&D Center Pte.Ltd. Haruyuki Makio, Terunori Fujita 38
1.7 Past, present and future of catalyst characterization
Catalyst Research Center, Hokkaido University Kiyotaka Asakura 51

1.8 History and outlook of photocatalyst research
The University of Tokyo Kazuhiko Maeda, Kazunari Domen 60

1.9 Development of the Japanese chemical industry over past decades and prospects for research in the 21st century
Mitsubishi Chemical Group Science and Technology Research Center Corp. Tohru Setoyama 72

1.10 Historical Stream, Trends and Outlook for Polymerization Catalysts
Tokyo Metropolitan University Kotohiro Nomura 80

1.11 Bio-based chemicals towards green innovation
Kyoto Gakuen University Sakayu Shimizu 92

2. Recent activities of Japanese academic organizations

Aichi University of Technology 107 Kobe University 166
Akita University 107 Kochi National College of Technology 169
Asahikawa National College of Technology 109 Kochi University 169
Central Research Institute of Electric Power Industry 110 Kogakuin University 170
Chiba Institute of Technology 111 Kyoto Institute of Technology 171
Chiba University 112 Kyoto University 172
Chuo University 115 Kyushu Institute of Technology 184
Doshisha University 117 Kyushu University 186
Ehime University 119 Kumamoto University 198
The University of Electro-Communications 121 Meiji University 199
Gifu University 122 Meisei University 200
Gunma University 125 University of Miyazaki 201
Hakodate National College of Technology 126 Muroran Institute of Technology 203
Hirosaki University 126 Nagaoka University of Technology 204
Hiroshima University 127 Nagaoka University 205
Hokkaido University 130 Nagasaki University 206
Hokkaido University of Education 144 National Institute of Advanced Industrial Science and Technology
University of Hyogo 146 Institute 209
Ibaraki National College of Technology 147 National Institutes of Natural Sciences
Ichinoseki National College of Technology 147
International Christian University 148 Nara Institute of Science and Technology
Ishinomaki Senshu University 149 Nara Women’s University 219
Japan Advanced Institute of Science and Technology 150 National Defense Academy 221
Kagoshima University 152 National Institute of Advanced Industrial Science and Technology
Kanagawa University 153 Institute 222
Kansai University 156 Nihon University 239
Keio University 159 Numazu National College of Technology
Kinki University 160

The University of Kitakyushu 161 Okayama Ceramics Research Foundation
Kitami Institute of Technology 162

University of Miyazaki 201
Kobe University 166
Kochi National College of Technology 169
Kochi University 169
Kogakuin University 170
Kyoto Institute of Technology 171
Kyoto University 172
Kyushu Institute of Technology 184
Kyushu University 186
Kumamoto University 198
Meiji University 199
Meisei University 200
University of Miyazaki 201
Muroran Institute of Technology 203
Nagaoka University of Technology 204
Nagaoka University 205
Nara Institute of Science and Technology
University of Miyazaki 201
Nara Women’s University 219
National Defense Academy 221
National Institute of Advanced Industrial Science and Technology
Nihon University 239
Numazu National College of Technology
Okayama Ceramics Research Foundation

237
241
Index

Okayama University......................... 243
Oita University.............................. 247
Osaka University......................... 249
Osaka Prefecture University........ 267
Research Institute of Innovative Technology for the Earth........ 272
RIKEN... 273
Ritsumeikan University............... 274
Ryukoku University....................... 275
Sagami Chemical Research Institute... 276
Saitama University....................... 278
Seikei University......................... 279
Industrial Research Center of Shiga

Prefecture 280
Shimane Institute for Industrial Technology
.. 281
Shimane University....................... 282
Shinshu University....................... 283
Shizuoka University...................... 285
Sophia University......................... 288
Tohoku University......................... 290
Tokai University........................... 297

INDEX

The University of Tokushima................. 299
The University of Tokyo...................... 301
Tokyo Institute of Technology............... 309
Tokyo Metropolitan University........... 323
Tokyo University of Agriculture and Technology
.. 325
Tokyo University of Science.............. 327
Tokyo University of Science Yamaguchi
.. 329
Tottori University........................... 330
University of Toyama....................... 332
Toyama Industrial Technology Center.... 336
Toyohashi University of Technology.... 336
Toyota Technological Institute........... 339
University of Tsukuba...................... 339
Ube National Collage of Technology.... 341
Utsunomiya University...................... 341
Waseda University.......................... 344
Yamaguchi University...................... 350
University of Yamanashi................... 351
Yokohama National University........... 353

356
The history and development of metallic catalysts

Takashiro Muroi※

※ Industrial Catalysts Laboratory, 5-8-5 Kariya, Ushiku, 300-1235 Ibaraki, Japan
1. Introduction

The fundamentals of industrial catalysts used in modern chemical and environmental processes were discovered by the middle of the 20th century. In these first-generation processes, severe reaction conditions were applied, resulting in high construction and utility costs and performance that was inferior to that found in modern chemical plants. The second generation catalysts developed in the latter half of the 20th century were more sophisticated. They not only extended the variety of usable feedstocks and products manufactured, but also reduced the consumption of material and energy inputs, thus achieving higher profitability and lower environmental emissions. These catalysts were developed primarily for continuous and commercial-scale processes, and contributed to the establishment of a modern and prosperous chemical industry. Even in ammonia synthesis, the highest pressure and high temperature process in the chemical industry, Japanese chemists discovered a Ru/Cs-based high-performance catalyst in the 1980s that can function at much lower pressure and temperature. The first commercial use of this Ru/Cs-based catalyst was by BP-KBR in 1996. Further progress and enhanced contributions from catalysts is expected moving forward in order to combat global warming and an anticipated shortage of fossil fuel resources in the near future.1)

2. The history of metallic catalysts

2.1 1831-1900 (In the beginning)

Metallic catalysts were already utilized in the nascent stages of the chemical industrial revolution in the 19th century in Europe. An asbestos-supported Pt (P. Phillips, 1831) was the first catalyst that appeared in industry for the commercial production of sulfuric acid, an important material for producing sodium carbonate by the Leblanc process (N. Leblanc, 1791). The chamber process (introduced in 1746), or NO₂-catalysed SO₂ oxidation process, was gradually switched to the new catalytic process. In 1913, F. Slama and H. Wolf patented, a catalyst made of a salt of vanadic acid with alkali promotors on a porous support for this process. The V₂O₅-alkali catalyst became popular soon after this finding, replacing all the Pt-catalysed processes. Nitric acid, another basic material in the chemical industry, was produced by acidolysis of KNO₃ with sulfuric acid when Alfred Nobel developed dynamite in 1866. The concept of vapor phase oxidation of ammonia to nitric acid was proposed by F. Kuhlmann in 1838, but the first industrial process was only developed in the 1920s, when an ample supply of gunpowder was required and the Pt gauze (multiple layers of a fine wire mesh) catalyst was invented. The activity of various finely-dispersed metallic hydrogenation catalysts was studied by Paul Sabatier, who together with Jean B. Senderens in France discovered the Ni catalyst for hydrogenation of unsaturated compounds in 1897. In the same year Joseph Crosfield & Sons succeeded in producing hardened (or hydrogenated) oil via Ni catalyzed hydrogenation of fish and vegetable oils in the UK.

2.2 1900-1960 (Rise of metallic catalysts and coal era)

Many new catalytic processes were developed during the golden era of 1900 to the 1920s. Production of nitric acid was started via catalytic oxidation of ammonia with a coil of Pt strips by Wilhelm Ostwald in 1906, and soon after with a Pt gauze catalyst developed by K Kaiser in 1909. Further, ammonia was produced via the calcium cyanamide process from calcium carbide.