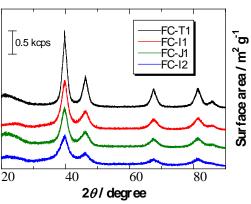
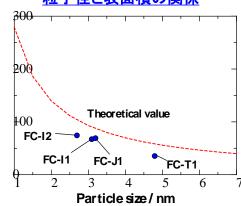

評価法:マルチチャンネルフローニ重電極法

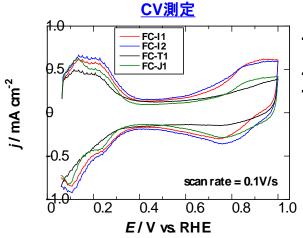
(4種類の触媒活性を全く同じ温度、酸素濃度のもとで同時に測定)




ノイズで酸素還元活性とH₂O₂生成を測定可能.

- (30°C), N₂飽和 •挿引速度:0.5mV/s
- ·担持量:11.0µg/cm² (カーボン基準)

4触媒のXRDスペクトル

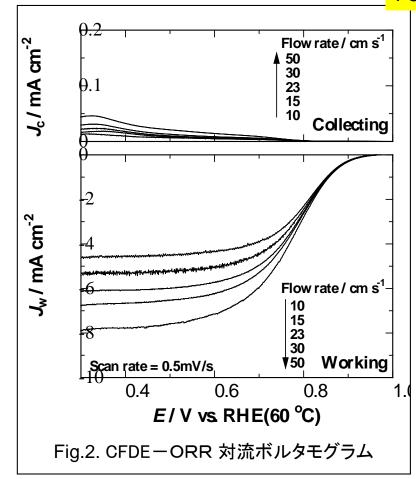

粒子径と表面積の関係

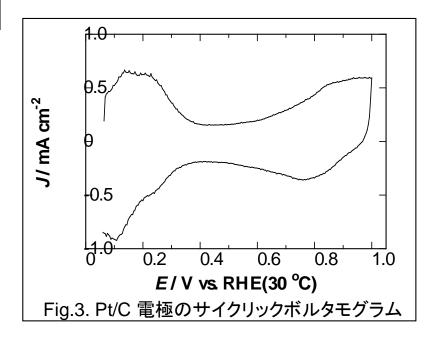
触媒利用率

Pt/C	粒子径 $d_{ m XRD}$ (nm)	表面積 (実測値) ECA(m²/g)	表面積 (理論値) SA(m²/g)	利用率 (%)
FC-I2	2.7	73.8	103	71.4
FC-J1	3.1	66.7	90.0	74.1
FC-I1	3.2	68.6	87.2	78.7
FC-T1	4.8	34.8	58.1	59.9

溶液中における各触媒のPt利用率は60~80%

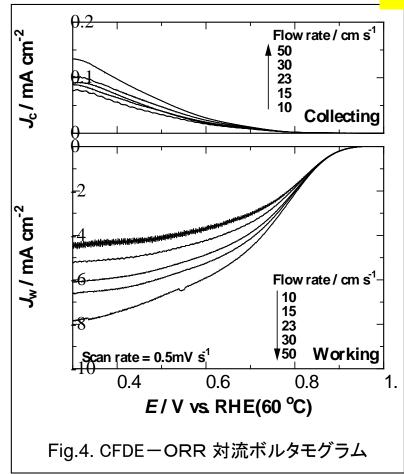
評価条件


```
1.酸の純度等: メーカー( 関東化学 ).酸の純度(UGR(61%),前電解にて高純度化処理後、10倍希釈)
2. 水の純度等: メーカーまたは製造機等(Milli-Pore Japan, MILLI-Q GRADIENT A10 & ELIX 10 UV)
3. 洗ビンの容器の材質: ( 未使用 )
4. 電解槽および電気化学測定装置名等: (電解槽:マルチチャンネルフローニ重電極(CFDE) /
                                        電気化学測定装置: HA1010mM8 北斗電工
5. 電解槽の容積: セル(1.9 mL)、電解液タンク(1000 mL)
6. 電解槽の洗浄方法: ( クロム混酸浸漬後、milli-pore水にて洗浄 )
7. チャンネルフロ-雷極サイズ:
        Au試験極 1mm×4mm(0.04cm²)、Pt検出極 1mm×4mm(0.04cm²)
8. 試験電極作製法: GC電極上に触媒を載せた上にイオノマーを滴下
9. 試験電極部: Pt/C担持量(11.0 μg cm<sup>-2</sup>). イオノマー担持量(Nafion 0.2wt%, 12.5 μL cm<sup>-2</sup>)
10. Au電極上への触媒担持方法(一回で担持、数度に分けて担持、その他の工夫などを簡潔に記述願います):
   ( 空気プラズマにより表面を親水化処理後、規定量の触媒インクを滴下 )
11. 試験電極作製時の加熱温度と時間: 130°C. 30 min
12. ORR特性評価における電解液中での電極の前処理:
     挿引速度:0.5V/sで50mV~1000mV間を定常状態になるまでサイクル(およそ80サイクル
13. ORR評価測定前酸素吹込時間: 60 min 以上
14.ORR評価中の酸素吹込状況: 電解液中に吹き込み
15. 特記事項: ORR活性値は下記の2通りで算出。
       ①I^{-1} vs U_{m}^{-1/3}プロット (I: ORR電流, U_{m}: 電解液流速) [Koutecky-Levichプロット]より
       ②1/I = 1/I_{LCC} + 1/I_{L} (I: ORR電流, I_{LCC}: 活性支配電流(限界電流補正), I_{L}: 限界電流)より
       I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm I} - I}
```



- 1. 触媒:FC-I1
- 2. ECSA (電気化学活性比表面積):

68.6 m² g⁻¹-(Pt) [27.4m² g⁻¹-(Pt/C)]

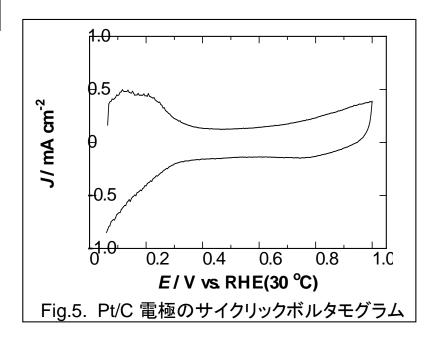
- 3. 縦軸: j / mA cm⁻² (geometric)
- 4. 横軸: E/V vs. RHE
- 5. 電解液の種類と濃度: 種類(HCIO₄)、濃度(0.1 M)
- 6. 電解液量と温度: 液量(700 mL), 温度(30 ℃)
- 7. ECSA の評価法: 水素吸着波
- 8. 電位走査速度: 100 mV s-1
- 9. 対極: Pt黒
- 10. 参照電極: RHE


- 1. 縦軸: j/ mA cm⁻² (geometric)
- 2. 横軸: E / V vs. RHE
- 3. ORR評価の電解液温度: a. 60 ℃,
- 4. 電解液流速: 任意(10~50 cm s⁻¹)の

- 1. 触媒: FC-I2
- 2. ECSA (電気化学活性比表面積):

73.8 $m^2 g^{-1}$ -(Pt) [29.3 $m^2 g^{-1}$ -(Pt/C)]

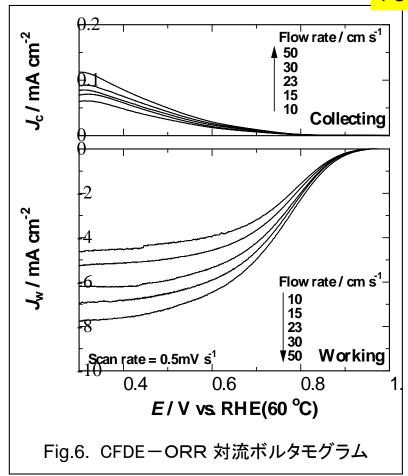
- 3. 縦軸: j / mA cm⁻² (geometric)
- 4. 横軸: E/V vs. RHE
- 5. 電解液の種類と濃度: 種類(HCIO₄)、濃度(0.1M)
- 6. 電解液量と温度: 液量(700 mL), 温度(30 ℃)
- 7. ECSA の評価法:水素吸着波
- 8. 電位走査速度: 100 mV s-1
- 9. 対極: Pt黒
- 10. 参照電極: RHE

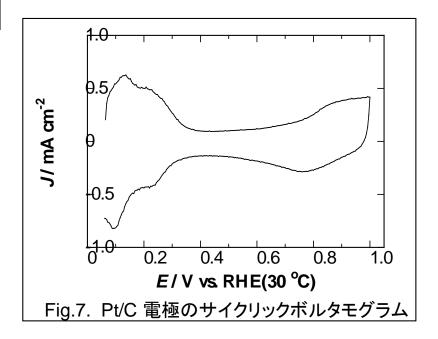


1. 縦軸: j/ mA cm⁻² (geometric)

2. 横軸: E / V vs. RHE

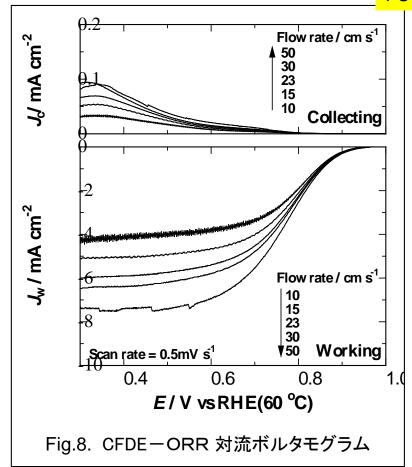
3. ORR評価の電解液温度(〇印): 60 ℃

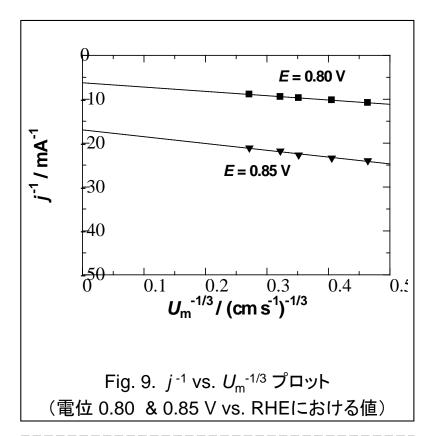

4.電解液流速: 任意(10~50 cm s⁻¹)の


- 1. 触媒:FC-T1
- 2. ECSA (電気化学活性比表面積):

34.8 m² g⁻¹-(Pt) [17.8m² g⁻¹-(Pt/C)]

- 3. 縦軸: j / mA cm⁻² (geometric)
- 4. 横軸: E/V vs. RHE
- 5. 電解液の種類と濃度: 種類(HCIO₄)、濃度(0.1M)
- 6. 電解液量と温度: 液量(700 mL), 温度(30 ℃)
- 7. ECSA の評価法:水素吸着波
- 8. 電位走査速度: 100 mV s-1
- 9. 対極: Pt黒
- 10. 参照電極: RHE


- 1. 縦軸: j/ mA cm⁻² (geometric)
- 2. 横軸 : *E* / V vs. RHE
- 3. ORR評価の電解液温度: a. 60 ℃
- 4.電解液流速: 任意(10~50 cm s⁻¹)の


- 1. 触媒:FC-J1
- 2. ECSA (電気化学活性比表面積):

66.7 m² g⁻¹-(Pt) [25.3m² g⁻¹-(Pt/C)]

- 3. 縦軸: j / mA cm⁻² (geometric)
- 4. 横軸: E/V vs. RHE
- 5. 電解液の種類と濃度: 種類(HCIO₄)、濃度(0.1M)
- 6. 電解液量と温度: 液量(700 mL), 温度(30 ℃)
- 7. ECSA の評価法:水素吸着波
- 8. 電位走査速度: 100 mV s-1
- 9. 対極: Pt黒
- 10. 参照電極: RHE

- 1. 縦軸: j/ mA cm⁻² (geometric)
- 2. 横軸: E / V vs. RHE
- 3. ORR評価の電解液温度: a. 60 ℃,
- 4.電解液流速: 任意(10~50 cm s⁻¹)の

1. 触媒: FC-I1

2. 電位 0.80 & 0.85 V vs. RHEにおける活性

化支配電流密度:

@0.80 V; 554 A g⁻¹-Pt, 0.81 mA cm⁻²-Pt @0.85 V; 202 A g⁻¹-Pt, 0.29 mA cm⁻²-Pt

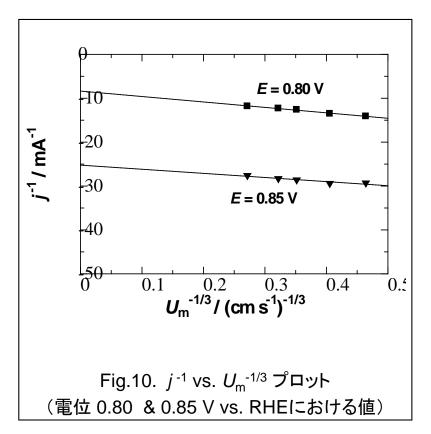
3. 縦軸: *j*⁻¹/ mA⁻¹

4. 横軸: *U*_m^{-1/3}/(cm s⁻¹)^{-1/3}

5. 電流値評価: アノーディック電位走査時

評価方法②:

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。


$$I_{LCC} = \frac{I_{L} \times I}{I_{L} - I}$$

I: ORR電流, I_{LCC} : 活性支配電流(限界電流補正), I_L : 限界電流

	流速 $U_{ m m}$	$J_{ m LCC}$	Mass Act
	(cm/s)	(mA/cm^2)	(A/g)
	10	0.93	637
	15	0.89	613
0.001/	23	0.89	614
0.80V	30	0.88	601
	50	0.88	603
	平均值	0.89	614
	標準偏差	0.02	13.0

	10	0.27	186
	15	0.27	183
	23	0.27	185
0.85V	30	0.28	190
	50	0.28	192
	平均值	0.27	187
	標準偏差	0.005	3.3

0.90V	10	0.057	39.3
	15	0.057	39.1
	23	0.059	40.1
	30	0.064	44.0
	50	0.066	45.5
	平均值	0.061	41.6
	標準偏差	0.003	2.4

1. 触媒: FC-I2

2. 電位 0.80 & 0.85 V vs. RHEにおける活性

化支配電流密度:

@0.80 V; 410 A g⁻¹-Pt, 0.55 mA cm⁻²-Pt @0.85 V; 136 A g⁻¹-Pt, 0.18 mA cm⁻²-Pt

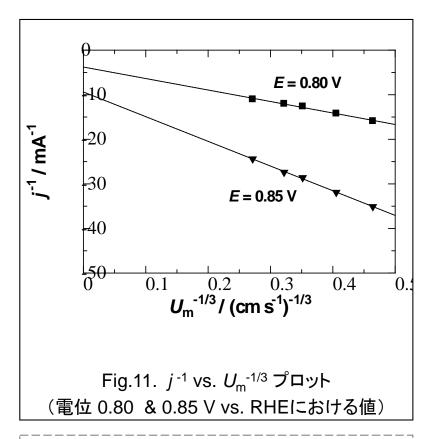
3. 縦軸: *j*⁻¹/ mA⁻¹

4. 横軸: *U*_m^{-1/3}/(cm s⁻¹)^{-1/3}

5. 電流値評価: アノーディック電位走査時

評価方法②:

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。


$$I_{LCC} = \frac{I_{L} \times I}{I_{L} - I}$$

I: ORR電流, I_{LCC} : 活性支配電流(限界電流補正), I_{L} : 限界電流

	流速 $U_{\rm m}$	$J_{ m LCC}$	Mass Act
	(cm/s)	(mA/cm ²)	(A/g)
	10	0.54	403
	15	0.53	396
0.001	23	0.55	405
0.80V	30	0.55	406
	50	0.54	399
	平均值	0.54	402
	標準偏差	0.005	3.8

	10	0.20	145
	15	0.19	140
	23	0.19	141
0.85V	30	0.19	141
	50	0.19	141
	平均值	0.19	142
	標準偏差	0.002	1.7

0.90V	10	0.038	28.5
	15	0.038	28.4
	23	0.039	29.0
	30	0.040	29.6
	50	0.041	30.5
	平均值	0.039	29.2
	標準偏差	0.001	0.6

1. 触媒:FC-T1

2. 電位 0.80 & 0.85 V vs. RHEにおける活性

化支配電流密度:

@0.80V; 590 A g⁻¹-Pt, 1.69 mA cm⁻²-Pt @0.85 V; 232 A g⁻¹-Pt, 0.66 mA cm⁻²-Pt

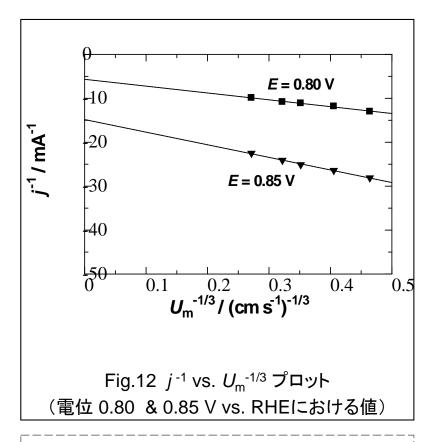
3. 縦軸: *j*⁻¹/ mA⁻¹

4. 横軸: *U*_m-1/3/(cm s-1)-1/3

5. 電流値評価: アノーディック電位走査時

評価方法②:

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。


$$I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm L} - I}$$

I: ORR電流, I_{LCC} : 活性支配電流(限界電流補正), I_{I} : 限界電流

	流速 U _m	$J_{ m LCC}$	Mass Act
	(cm/s)	(mA/cm ²)	(A/g)
	10	0.59	206
	15	0.66	230
0.0017	23	0.73	254
0.80V	30	0.74	259
	50	0.80	280
	平均值	0.71	246
	標準偏差	0.07	25.3

	10	0.21	73.2
	15	0.23	80.1
	23	0.25	88.4
0.85V	30	0.26	91.4
	50	0.29	103
	平均值	0.25	87.2
	標準偏差	0.03	10.0

0.90V	10	0.051	17.7
	15	0.056	19.4
	23	0.062	21.5
	30	0.064	22.4
	50	0.077	26.8
	平均值	0.062	21.5
	標準偏差	0.008	2.83

1. 触媒: FC-J1

2. 電位 0.80 & 0.85 V vs. RHEにおける活性

化支配電流密度:

@0.80 V; 669 A g⁻¹-Pt, 0.99 mA cm⁻²-Pt @0.85 V; 255 A g⁻¹-Pt, 0.38 mA cm⁻²-Pt

3. 縦軸: *j*⁻¹/ mA⁻¹

4. 横軸: *U*_m^{-1/3}/(cm s⁻¹)^{-1/3}

5. 電流値評価: アノーディック電位走査時

評価方法②:

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。

$$I_{LCC} = \frac{I_{L} \times I}{I_{L} - I}$$

I: ORR電流, I_{LCC} : 活性支配電流(限界電流補正), I_{LCC} : 限界電流

	流速 $U_{\rm m}$	$J_{ m LCC}$	Mass Act
	(cm/s)	(mA/cm ²)	(A/g)
	10	0.76	518
	15	0.80	541
0.001	23	0.80	540
0.80V	30	0.81	545
	50	0.86	580
	平均值	0.81	545
	標準偏差	0.03	20.2

	10	0.25	168
	15	0.26	175
	23	0.27	180
0.85V	30	0.27	186
	50	0.29	197
	平均值	0.27	181
	標準偏差	0.01	9.9

0.90V	10	0.052	35.3
	15	0.059	40.1
	23	0.062	42.3
	30	0.066	44.4
	50	0.070	47.4
	平均值	0.062	41.9
	標準偏差	0.005	3.7

まとめ

比活性 (mA cm⁻²)

	E vs. RHE	FC-I1	FC-I2	FC-T1	FC-J1
j^{-1} vs. $U_{\mathrm{m}}^{-1/3}$ プロット (Koutecky-Levichプロット)	0.80	0.81	0.55	1.69	0.99
	0.85	0.29	0.18	0.66	0.38
$I_{\rm L} \times I$	0.80	0.89	0.54	0.71	0.81
$I_{LCC} = \frac{I_{L} \times I}{I_{L} - I}$	0.85	0.27	0.19	0.25	0.27
(限界電流補正)	0.90	0.061	0.039	0.062	0.062

質量活性 (A g_{Pt}-1)

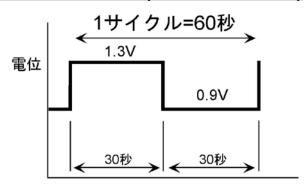
	E vs. RHE	FC-I1	FC-I2	FC-T1	FC-J1
j^{-1} vs. $U_{ m m}^{-1/3}$ プロット (Koutecky-Levichプロット)	0.80	554	410	590	669
	0.85	202	136	232	255
$I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm LCC}}$	0.80	614	402	246	545
$I_{LCC} = \frac{I_{I} - I}{I_{I} - I}$	0.85	187	142	87.2	181
(限界電流補正)	0.90	41.6	29.2	21.5	41.9

評価条件

```
1. 酸の純度等: メーカー( 関東化学 ). 酸の純度(UGR(61%), 前電解にて高純度化処理後、10倍希釈)
2. 水の純度等: メーカーまたは製造機等( Milli-Pore Japan, MILLI-Q GRADIENT A10 & ELIX 10 UV ).
          純度:( 不純物3 ppb )
3. 洗ビンの容器の材質: (
                    未使用
4. 電解槽および電気化学測定装置名等: (電解槽:RRDE標準セル(パイレックス製)/
                             電気化学測定装置:HA1010mM8 北斗電工 )
5. 電解槽の容積: 100 mL
6. 電解槽の洗浄方法: ( クロム混酸浸漬後、milli-pore水にて洗浄 )
7. 回転電極の電極部の大きさ: 直径(6 mm)
8. 試験電極作製法: b. GC電極上に触媒を載せた上にイオノマーを滴下
9. 回転電極の試験電極部: Pt/C担持量(11.0 µg cm<sup>-2</sup>), イオノマー担持量(0.05wt%, 25 µL cm<sup>-2</sup>)
10. GC電極上への触媒担持方法(一回で担持、数度に分けて担持、その他の工夫などを簡潔に記述願います):
  ( 一回で扣持 )
11. 試験電極作製時の加熱温度と時間: 加熱なし
12. ORR特性評価における電解液中での電極の前処理:
       | 挿引速度:0.5√sで50m√~1000m√間を定常状態になるまでサイクル(およそ80サイクル
13. ORR評価測定前酸素吹込時間: 60 min
14.ORR評価中の酸素吹込状況: 電解液中に吹き込み
15. 特記事項:なし
```

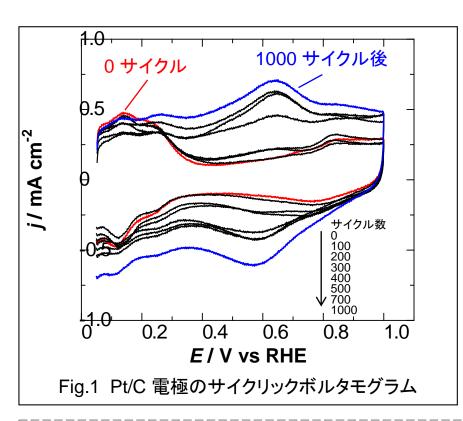
耐久性評価プロトコル

FCCJの起動停止模擬試験法に準拠して電位ステップによる加速劣化(N₂飽和電解液)



サイクリックボルタンメトリー(CV)によるPtの 活性表面積(ECSA)の測定 (N₂飽和電解液)

回転リングディスク電極(RRDE)法による酸素還元(ORR)活性の評価 (O₂飽和電解液)


起動停止プロトコル(2007年FCCJ提案)

 N_2 , 0.1M HClO₄(25°C)

F

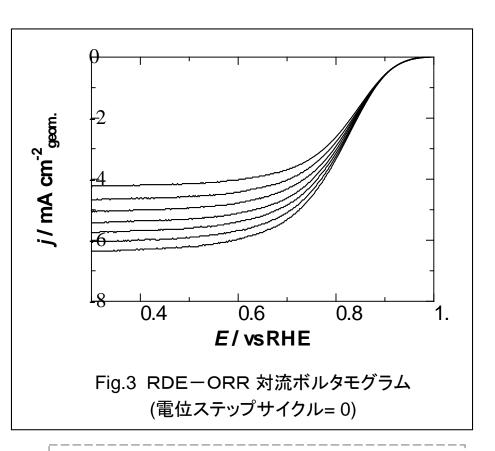
電気化学活性比表面積(ECSA)の変化

•触媒: FC-T2,

•ECSA(初期値): 80 m² g⁻¹-(Pt)

・電解液の種類と濃度: 種類(HCIO₄)、濃度(0.1M)

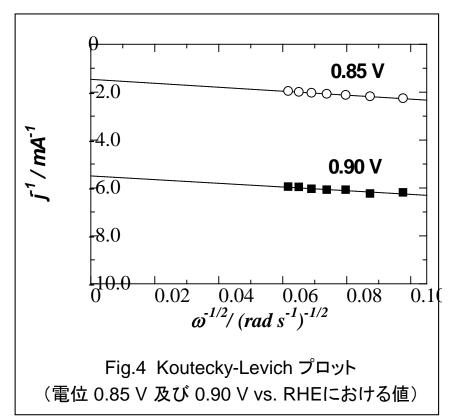
・電解液量と温度:液量(100 mL),温度(25 ℃)


・ECSA の評価法:水素吸着波

•電位走査速度: 100 mV s⁻¹

•対極:Pt黒

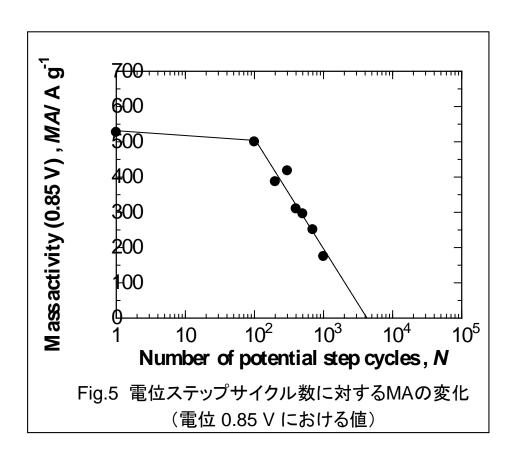
参照電極: RHE


ORRボルタモグラムとKoutecky-Levichプロット(劣化試験前)

- •ORR評価の電解液温度: 25 ℃,
- ・電極回転速度: 1000~2500 rpmの

範囲で7種類の速度)

•雷位走杳速度: 5 mV s⁻¹



電位 0.85 V および 0.90 V vs. RHEにおける 活性化支配電流密度:

@0.85 V; 527 A g⁻¹-Pt, 0. 65 mA cm⁻²-Pt @0.90 V ; 141 A g⁻¹-Pt, 0. 17 mA cm⁻²-Pt

電流値評価: b. アノーディック電位走査時,

質量活性(MA)の変化

