参照触媒を用いた測定法の標準化 — 6. 参照触媒酸化チタンの物性と触媒作用—

触媒学会参照触媒委員会

1. 緒 言

酸化チタンは触媒としてのみならず、白色顔料と して塗料、インキ、合成樹脂、化粧品などに利用さ れており、また、微粒子酸化チタンはそのバンドギ ャップおよび散乱から紫外線吸収剤としても幅広く 用いられている.

触媒としての酸化チタンは、酸・塩基作用,光触 媒作用,金属,酸化物,硫化物などの担体,複合酸 化物触媒など,多様な機能,用途がすでに知られて いる.塗料,化粧品などにおける酸化チタンの特性 の多くもそれらの特異な触媒作用と関係している. また,それらの多様な機能の間には密接な相互関係 が期待される.

参照触媒酸化チタンは,純度,結晶型,製造法, 粒径など,その物理化学的特性を決定している種々 の因子が比較できるよう選定されている(Table 1). 参照触媒利用の利点の一つは,データ付きの触媒と して触媒作用などを多角的,総合的に理解する手が かりが得られることである.参照触媒酸化チタンの 配布が始まって以来10年近く経過した.その間「酸 化チタンの物性と触媒作用」と題する二回の参照触 媒討論会^{3,3)}を初め,触媒研究発表会における参照 触媒セッション^{1,4)}で参照触媒酸化チタンに関する 多くの発表がなされた.本報告ではそれらの成果の 一端を纒めた.酸化チタンの物性,触媒作用をより

 Table 1
 Nominal Physicochemical Properties of JRC-TiO₂.

	TIO-1	TIO-2	TIO-3	TIO-4	TIO-5
Composition/wt%			- 110 Mar	<u></u>	·····
TiO ₂	95.0	98.5	99.7	>99.5	>99.9
Al_2O_3			0.00	< 0.3	Al <10 ppm
SiO ₂		0.02	0.00	< 0.2	Si <10 ppm
Fe ₂ O ₃		10 ppm	0.0196	< 0.01	Fe <10 ppm
SO ₃	3.64	300 ppm	0.04		SO4 < 20 ppm
P ₂ O ₅		0.18	0.007		
Nb ₂ O ₅		0.4	0.00		Nb <10 ppm
Cl			0.001	HCl<0.3	Cl < 70 ppm
others		K ₂ O 0.01		Heavy	Ca <20 ppm
		Na ₂ O 60 ppm	Na ₂ O 0.14	metal<5ppm	Cu <10 ppm
					Sn $< 10 \text{ ppm}$
Particle size/ µm		0.4	0.03-0.05	ca. 0.021	0.64
Specific gravity/g cm^{-3}					
true				3.8	
apparent		0.99		0.13	
Specific surface area/m ² g ⁻¹	72.6	18	40	50 ± 15	2.6 - 2.7
pH		3.6 (10%)		3–4 (aq. 4%)	
Isoelectric point (pH)				6.6	
Crystal structure	Anatase	Anatase	Rutile	Mainly Anatase	Rutile; 93.9%
Preparation method	Liquid Phase	Liquid Phase	Liquid Phase	Gas Phase	Gas Phase

	TIO-1	TIO-2	TIO-3	TIO-4	TIO-5
Specific surface area ¹⁾ (m^2/g)					
RT/N_2^{d}	68.2	13.5	42.8	39.1	2.3
RT/N ₂ ^{b)}		16.3	50.7	49.3	2.7
200°C/N ₂ ^{b)}	72.5	14.3	49.2	47.6	2.4
RT/CO ₂ ^{b)}	44.5	10.3	34.4	36.3	1.6
RT/NH3 ^{b)}	69.6	13.6	38.5	41.9	2.4
500°C in H ₂ /N ₂ ^{c)}	51	14	41	40	2.8
1000°C in H_2/N_2^{c}	0.81	1.2	0.78	0.53	0.78
Pore Volume $(10^{-2} \text{ cm}^3/\text{g})^{b}$		3.3	6.5	11	0.44

Table 2 Specific Surface area and Pore Volume of JRC-TiO2.

1) treatment temperature/adsorption gas.

深く理解する手掛かりになると考えている.今後, 参照触媒酸化チタンが触媒学会会員にさらに広く利 用されることを願っている.

2. 表面積および細孔分布

比表面積および細孔容積の値をTable 2 に示す. この表には、前処理による変化および二酸化炭素、 アンモニアによる表面積測定結果も纒めた.窒素吸 着から求めた比表面積の前処理温度依存性をFig.1 に示す²⁾. TIO-1,3,4については400℃の加熱 排気で最大値を示し、500℃以上では急激に低下し た.これは高温処理による焼結のためと考えられて いる.細孔分布については、TIO-1が5 nm, TIO-3が15 nm 付近に平均細孔を持っているが、 高温処理によって大きな細孔径へと移行し、細孔容 積は低下した²⁾.

3. 表面水酸基

出光中研²⁾はFTIRで表面水酸基の分類と定量を 行っている. 3725 cm⁻¹に Paired OH (塩基的水 酸基), 3670, 3660 cm⁻¹に 2 種の Single OH基(酸 性的水酸基)を認めた. 200℃で1時間加熱排気後, 全水酸基量はTIO-1から順に相対値で 21:16:25: 48:50 であった.

4.酸特性と反応

これまで測定された酸・塩基性質をTable 3 に示 す. この値の中には図から読み取った値も含まれて いる. 最高酸強度から, TIO-1 が最も強い酸強度 を有していると判断される. 酸強度分布は山口大工²⁾ により測定されており(Fig.2), TIO-1, 2 では $H_0 = -5.0$ 以下の強い酸点があり, TIO-3 では中 程度の酸点が, TIO-4, 5 では強い酸点はなく H_0 =

Fig. 1 Dependence of the specific surface area of JRC-TiO₂ on evacuation temperature²⁾ $(N_2 \text{ adsorption at a liquid } N_2 \text{ temperature}).$

1.5以上の弱い酸点が主である.400℃で排気する とTIO-1,2,3では $H_0 = -5.0 \sim -3.0$ の中程度の 酸点が増加したが、TIO-4,5では弱酸点が増加し た.アンモニアやテトラエチルアミン(TEA)の吸 着量もTIO-1が高い値を示した.しかし、日本ペ イント中研³⁾での酢酸吸着測定の際、TIO-1では 酢酸の当量点電位よりかなり高い電位で新たな変曲 点を認めており、酢酸より強い酸の溶出が示唆され た.これは不純物による硫酸の溶出と考えられてい る.

Table 3 に示さなかったデータとしてはピリジン 吸着種の IR スペクトル^{2, 3)} とアンモニア²⁾、ピリジ

料

	TIO-1	TIO-2	TIO-3	TIO-4	TIO-5
NH ₃ chemisorption ^{b, 1)}					
$RT (cm^{3}/g)$	18.38	1.63	3.53	4.75	0.28
$(Mol./nm^2)$	7.23	3.25	2.21	3.26	3.19
$400^{\circ}C (cm^{3}/g)$	11.52	1.90	5.54	6.59	
$(Mol./nm^2)$	3.97	3.24	2.90	3.56	
NH3 desorption ^{b)}					
(mmol/g)	0.213	0.087	0.244	0.280	0.059
$(\mu mol/m^2)$	3.00	5.58	4.54	5.59	
Maximum Acid Strength (H ₀) ^{c)}	-3.0	-3.0-+1.5	+1.5-+3.3	+3.3 - +4.0	+3.3-+4.0
Tetraethylamine					
adsorption ^{c)} (mmol/g)	0.26	0.03	0.05	0.05	0.01
Acid conc. $(\mu \text{ mol/m}^2)^{b}$		0.64	2.2	0.49	0.67
pH (5%) ^{b)}	2.0	3.7	7.3	4.2	3.9
Isoelectric point ^{c)}	5.9	3.1	5.6	6.7	5.4
Isoelectric point ^{b)}	5.3		3.0	6.3	
Isoacidic point ^{b)}		3.0	6.7	4.0	
CO ₂ adsorption (µmol/g) ^{b)} Acetic acid adsorption ^{c)}	11.6	1.2	17.4	9.6	0.4
(nmol/g)		0.2	1.5	1.5	0.1
Phenol adsorption $(mg/g)^{c}$		5.59	17.9	1.68	0.61

Table 3 Acid-Base Properties of JRC-TiO₂.

1) treatment temperature.

Fig. 2 Acid strength distribution of JRC-TiO₂ evacuated at $300^{\circ}C^{2}$ (Measured by a *n*-butylamine titration method using Hammett indicators).

The number in the figure denotes the number of JRC-TIO.

ン⁴⁾, 二酸化炭素などの昇温脱離 (TPD) がある. 資生堂基研²⁾, 大阪府大工・神戸大医短 (TIO-3, 4)²⁾ と高知高専・豊橋技科大 (TIO-4)³⁾ の IR 測 定例があるが, TIO-1 はB酸, TIO-2, 3, 4はL 酸, TIO-5 は酸が弱くて型を決定できなかった.

アンモニアの TPD については北海道大理の測定

結果がある²⁾. TIO-1については 380℃にアンモ ニアの脱離ピークがあり,シリカーアルミナ程度の 強さの酸点が認められた. この原因としては残留硫 酸根であると推定している. TIO-2,3,4 は100~ 300℃に脱離ピークが認められ中程度の強さ,TIO-5には弱い酸点しか存在しないことが示された. 鹿 児島大工²⁾でも同様な測定を行っており,TIO-3> 4>2>5の順に酸強度が低下することが明らかと なった. また,TIO-3の単位面積当りの酸点濃度 はTIO-1を除く他の酸化チタンの4倍であり,ブ ロードな酸強度分布を示した.名古屋大工²⁾でも同 様にTIO-1では 300℃に脱離を示す強い酸点が, TIO-3では1より弱い酸点が,TIO-2,5ではシ ョルダーピークが認められなかったことから,強い 酸点は存在しないと判断した.

酸性質と触媒作用の関係もいくつか報告されてい る. t - ブチルアルコールの脱水反応活性が資生堂 基研¹⁾によって測定されており, TIO-1が非常に 高い脱水反応活性を示した, 順次TIO-4>3>2> 5となるが, 強い酸点が認められた順に脱水反応が 起こり易いことが分かった. 鹿児島大工²⁾ではフェ ニルエタノールの脱水速度定数と強酸点量との関係 を検討しているが, TIO-3>4 であり, 他の酸化 チタンは強酸点の量が少なく,反応活性が測定でき 資

料

なかった.反応速度定数と酸点濃度との関係には, ゼオライトやアルミナを含めても,よい直線関係が 見られた.ブテンの異性化反応²⁾,シリコーン重合 活性²⁾と酸性質の関係も検討されている.

東京学芸大化・警視庁化捜研²⁾ではDPPHを用い て表面トラップ(ST)濃度と水素ラジカルドナー (HRD)量を測定している.ST濃度はTIO-1~4 で殆ど変わらなかったが,HRDはTIO-1,2のみ に認められ,その量はTIO-1が2より約2桁多か った.また、マンガンアセチルアセトナートを酸化 チタンに添加し、ESRを測定したところ、TIO-1では6配位の、TIO-2,4では8配位の Mn^{2+} が 生成していると推定された³⁾.酸強度との関係が議 論されている.

5. 塩基特性と反応

Table 3 の下段に塩基特性を示す. 二酸化炭素の 化学吸着量は TIO-3 が高く, TIO-2,5 では非常 に少なかった. 北海道大理²⁰ の二酸化炭素の TPD では, Fig.3 に示すように TIO-3 を除き 60~100 ℃で容易に脱離することから, TIO-3 以外は弱い

The sample was evacuated at 500° C for 2h before adsorption of CO₂ (10 Torr, 30 min) at room temperature.

塩基点のみが存在すると推定された、酢酸の吸着で はTIO-3,4で比較的吸着量が多く、塩基性が高い ことを示した、フェノールの吸着量からも同様な結 論が得られた、また、 β -ジケトンの加水分解では TIO-3,4のみに活性が認められ、塩基量の値とよ く一致した³⁰. この反応はClaisen 縮合の逆反応で あり、塩基点が触媒活性点になっていると推定され た、

6. バンドギャップ

長崎大工²⁾ではオプチカルバンドギャップの測定 を行った.結果をFig.4とTable4に示す.前処理 条件によるバンドギャップの変化は100~500℃加 熱排気の条件下では見られなかった.また,バンド ギャップと酸点の関係も興味深い.福岡大工²⁾では オプチカルバンドギャップが高いと酸量が多くなる ことを示し,アモルファスの度合が高くなると結合 の歪によりTiとOの相互作用に変化が生じ,酸点 が発現するとしている.また,高知高専・豊橋技科 大²⁾のグループも酸化チタンの微細化によってバン ドギャップが増加し,価電子帯のエネルギー順位が 下がるため電子受容性が高くなり,その結果L酸点 の強度が増すと考察している.

Fig. 4 Diffuse reflectance spectra of JRC-TiO₂.²⁾

The sample was evacuated at 500° C and subsequently O₂-treated (100 Torr) at the same temperature.

	Crystal	Diameter of		Optical Ba	and Gap ³⁾ /e	eV
	Structure ¹⁾	crystallite ²⁾ /nm	ystallite ²⁾ direct- /nm allowed		indirect- allowed	indirect- forbidden
TIO-1	A	29	3.54	3.27	3.20	3.06
TIO-2	Α	38	3.48	3.25	3.19	3.12
TIO-3	R	32	3.40	2.96	2.70	2.86
TIO-4	A 73%	23(A), 50(R)	3.48	3.02	2.84	2.82
TIO-5	R 88%	58(R), 58(A)	3.10	2.98	2.95	2.88

1) Determined by the intensity ratio of the strongest XRD peaks; (110) at 3.25 Å for Rutile and (110) at 3.52 Å for Anatase.

2) Caluculated from FWHM of the strongest XRD peak. $D = 0.9 \lambda / B \cos \theta_B$.

3) Re: Rutile 3.0 eV, Anatase 3.2 eV.

 $\alpha h \nu \propto (h \nu - E_g)^n$ n = 1/2; direct-allowed, n = 3/2; direct-forbidden

n=2; indirect-allowed, n=3; indirect-forbidden

7. 担体としての酸化チタン

モリブデンとの相互作用については上智大理工^{2,3)} によって検討されており,酸化チタンの等電点より 酸性側で吸着が著しいことが分かった、これは酸化 チタン表面がプラス性を帯びモリブデン酸アニオン と静電的相互作用が強くなるためである.酸化バナ ジウムとの相互作用については大阪府大工・神大医 短のグループ²⁾で検討されており,気相で酸化バナ ジウムを3層および1層担持させた V_sO_s /TiO₂の 酸点濃度を測定した結果、アナターゼ型(TIO-4) はルチル型(TIO-3)よりL酸が多く、またB酸の 濃度も高い. 3層触媒では Ti および V上のL 酸は それぞれ20%および80%,1層触媒ではそれぞれ 40%と60%であることが分かった.3層,1層触 媒ともに酸点の濃度は表面水酸基の影響を受けてい ない. 同様に名古屋大工³⁾でも酸化チタンと酸化バ ナジウムの相互作用が検討され、酸化バナジウムを 担持した後に HCl でエッチングするとアナターゼ 型は酸化バナジウムとの結晶学的適合性が良いため 相互作用が強く、TiO₂と接した V₂O₅ 層部分が残 り易く、表面 V=O 数がわずかである、これに比べ てルチル型と酸化バナジウムとの相互作用は弱いた め, 上部数層が一度に削れていくことが見いだされ ている.

朝鮮大工²⁾では Fe 金属超微粒子を酸化チタンに 担持させ、CO水素化における担体の効果を検討し た.その結果、硫酸イオンの多い TIO-1 は CO 転 化率 1 % 以下、TIO-2 は 21.5 % であったが、その 他は 40~50 % の転化率であった。また、Ni 触媒を

担持し、ベンゼン水素化反応に及ぼす担体効果を鹿 児島大工³⁾で検討した結果,酸化チタンの表面積と ベンゼン反応率が直線関係となり、酸化チタンをこ の反応の担体とする場合はその表面積だけを考慮す れば良いことが分かった.大阪大基礎工²⁾でも同様 に酒石酸修飾 Ni/TiO2 触媒によるアセト酢酸メチ ルのエナンチオ面区別水素化反応における担体効果 を検討した. TIO-1は低い選択性しか与えず,不 純物の硫酸根が選択性に影響を与えていると考えら れた.フェニルアセチレンの部分水素化反応におけ るNi/TiO2, Fe/TiO2では硫酸根を含む TIO-1 で選択性が高く,硫酸根は正負両面を有している. バブコック日立²⁾では酸化チタン上の Pt の分散度 を測定した. Al₂O₃に比べて Pt の分散度は低く、 TIO-4 (8.6%)>5 (1.2%)であり、COパルス法、 X線回析で Ptの粒子径を測定した結果,いずれも TIO-5の方が径が大きかった. CO酸化活性では TIO-5の方が高温で活性が高く、C_aH_a酸化活性で は同等であった、大工研³⁾ではAuを担持させ、CO 酸化活性を測定しているが、TIO-4.3ともに0℃ 以下で COを 100 % 酸化でき、ルチルやアナターゼ のような結晶構造に依存しないことが分かった. Auの超微粒子と酸化チタンの接合面周辺部に活性 酸素種が生成し、反応中間体を保持することにより、 高活性が生ずると考えられている. Au 微粒子と酸 化チタン界面で反応が進行するため担体の結晶構造 とは関係が無いものと推定されている.

近畿大理工³⁾では,酸化チタンを r-アニリノプ ロピルトリメトキシシラン処理することにより酸化 チタン上にヘテロポリアニオン (PW₁₂)を固定化で

Catalyst (JRC-TIO-)	Reduction ^{a)} of CO ₂ (µmol/h·g)	Hydrogenation ^{b)} of methyl acetylene (µmol/h·g)	Isomerization ^{c)} of <i>cis</i> -2-butene (µmol/h·g)	Selectivity, % (<u>1-butene</u>) (trans-2-butene)
2 (anat.)	0.03	0.20	2.5	50
3 (ruti.)	0.02	0.12	1.0	250
4 (anat.)	0.17	8.33	9.4	285
5 (ruti.)	0.04	0.45	3.8	73
Reaction:		⊿ <i>G</i>	0 298 (kJ/mol)	
a) CO ₂	+ 2H ₂ O →	$CH_4 + 2O_2$	813	
b) $CH_3C \equiv C$	$CH + 3H_2O \rightarrow$	$CH_4 + C_2H_6 + 3/2O_2$	433	
c) <i>cis</i> -2-C ₄ H	8>	1-C ₄ H ₈	5	
	$ \rightarrow $	trans-2-C ₄ H ₈	-3	

 Table 5
 Photocatalytic activities of JRC-TiO2 catalysts.^{b,c)}

きることを見いだした.酸化チタンの結晶構造に依存しない.

8. 光触媒作用

参照触媒酸化チタンを用いていくつかの光触媒作 用が検討されている. 直接光照射時のオゾンの光分 解に対しては, TIO-1, 2を用いた時O₃ 自身の直 接光分解の寄与が大きいが、TIO-3,4,5ではTiO2 の光励起により開始される分解(光触媒分解)が大部 分を占めることが京都大工2)によって示された.ま た,アナターゼ結晶だけを含む TiO2 は活性が低 く、ルチル結晶を含む場合には活性が高いことが 分かった、シス-2-ブテンの光触媒異性化反応²⁾、 CO。のH。Oによる光還元反応³⁾が大阪府大工によっ て検討された、結果をTable 5 に纒めた、 TiO。の バンドギャップと活性の間にはほぼパラレルな関係 が見いだされる. 一方, TiO₂のホトルミネッセン スの収率の順はTIO-5≫2>4>3であった¹⁾. CO の光酸化、H₂Oの光分解についても検討されている (分子研・北海道大触研)²⁾. Pt/TiO₂ 触媒による 2-プロパノールの光脱水素反応では、活性序列は TIO-4>1~5>2~3 であることが京都大工³⁾に より明らかにされ、電子-正孔の再結合速度に関係 していると推定されている. Au/TiO₂ (TIO-4)は エタノール-水系からの光水素発生反応に対しては Pt/TiO。の約70%であることが大阪工研により報 告されている*).

酸化チタンに吸着したW(CO)₆³⁾およびMo(CO)₆⁴⁾ の光酸化反応が試みられている(大阪大基礎工). NaYゼオライトに比較し,TiO₂に吸着したW(CO)₆ の光酸化反応は非常に速く, TiO₂との複合効果が 認められ, TiO₂の光触媒作用と考えられている.

Fig. 5 Photo-oxidation of Mo(CO)₆ adsorbed on JRC-TiO₂.⁴⁾

JRC-TiO₂ was degassed at 400°C and subsequently O_2 -treated at 400°C before $Mo(CO)_6$ adsorption at room temperature. Photooxidation of $Mo(CO)_6/$ TiO₂; 100 Torr O₂ and 75 W high pressure Hg lamp.

Fig.5に Mo(CO)₆/TiO₂系の光酸化反応の酸化チ タン依存性を示した. TIO-1>4>2>3>5の序 列となり, TiO₂のバンドギャップの大きさの順とな る. TiO₂(TIO-4相当チタニア)に吸着した Fe (CO)₆ の光分解過程は分子研により報告されている³⁾.

排水中に微量含まれるジニトロフェノール,アニ リン等の酸化チタンによる光分解が福岡大工⁴⁾によ り検討され,活性序列はTIO-4>2≥5>3である ことが見いだされている.

料

Fig. 6 Adsorption of H₂O vapor on JRC-TiO₂ at 25°C.⁴) TiO₂ was evacuated at 25°C before H₂O adsorption.

9. 酸化チタンへの吸着

酸化チタンへのコバルトテトラフェニルポルフィ リンの吸着によりモノおよびジアニオン種が生じる ことがESR, DRVISにより明らかとなっている (九州大機能研)⁸⁾. TIO-1ではジアニオン種の割 合が高いが, TIO-2, 3, 4ではモノアニオン種がジ アニオン種の10~20倍生成することを見いだして いる. TiO₂からの電荷移動によると考えられてい る.

酸化チタンへのH₂Oの吸着特性は日本ベル・関学 大理のグループ⁴⁾により検討され,水分子と酸化チ タン表面との相互作用は,Fig.6からも分かるよう に,アナターゼとルチルで相違していることが見い だされている.

TiO₂ に吸着したO₂³⁾, CO₂, NO⁴⁾の昇温脱離 および光刺激脱離が奈良教育大により検討され,同 位体交換反応,他の酸化チタンの結果と比較されて いる.

文 献

- 1) 第62回触媒討論会(A)(仙台)(1988)
- 2) 第12回参照触媒討論会(長崎)(1989)
- 3) 第14回参照触媒討論会(札幌)(1991)
- 4) 第74回触媒討論会(A)(鹿児島)(1994)