1A01 Pt/Al₂0₃触媒のPt分散度と活性に対する調製条件の影響(B1)

松橋博美*・三浦 弘**・西山 覚*** *北海道教育大学函館校 〒040-8567 函館市八幡町 1-2 **埼玉大学工学部 〒338-8570 さいたま市下大久保 255 ***神戸大学工学部 〒657-8501 神戸市灘区六甲台町 1-1

Pt/Al₂0₃触媒を,アルミナ(参照触媒JRC-ALO-6),Pt 源(H₂PtCl₆,Pt(NO₂)₂(NH₃)₂),Pt 担持量を1wt%として,含浸法 で調製し,前駆体や焼成方法がPt の分散度や触媒活性・選択性に及ぼす影響を調べた.粒子内でのPt の分布の均一性は Pt(NO₂)₂(NH₃)₂を出発物質とするもので高く,空気流通下での焼成が有効であった.分散度はH₂PtCl₆で高く,残留塩素の影 響が示唆された.分散度とTOFの関係では、全体に負の相関が見られたが、Pt 源が影響しないもの(CH₃CCl₃の水素化脱塩 化水素,エチレンの水素化),Pt 源が影響するもの(チオフェンの水素化脱硫,プロパンの燃焼反応,ナフタレンの水素 化),明瞭な関係のないもの(ヘキサンの水素化分解)があった.

[主張したい事項](1) Pt 原料,焼成条件と Pt 分散度の関係,(2) 各種反応における TOF に対する Pt 原料と分散度の影響

1. 緒 言

アルミナ担持 Pt 触媒では,Pt の前駆体や担持方法が Pt の分散度や触媒活性・選択性に強く影響することは良く知 られているが,反応の種類によってその効果は異なること が予想される.そこで本研究では,Pt/Al₂0₃触媒の調製法 の標準化を目指し,Pt 触媒の調製法と Pt の分散度,活性 選択性に及ぼすその効果について統一的理解を得ることを 目的とし,同一の試料について多様な分析と多種の反応に 対する触媒活性の測定を行った.このため担体の効果を避 ける目的で,アルミナは参照触媒 JRC-ALO-6 に統一し,Pt 源は H₂PtCl₆,Pt(NO₂)₂(NH₃)₂とし,含浸法で調製すること とした.また,触媒活性は,CO吸着(パルス法,静止吸着 法),H₂吸着,H₂-O₂滴定で測定した分散度を基準にTOFで 比較することとした.

2. 実験

Pt/Al₂O₃ 触媒は、アルミナ (JRC-ALO-6, 球状 1.6 mm)、
 Pt 源 (H₂PtCl₆, Pt(NO₂)₂(NH₃)₂)、
 Pt 担持量を 1 wt%と統
 -して、含浸法で調製した.以下に調製法の詳細を示す。

- JRC-AL0-6を110℃で1日乾燥.
- (2) Pt: Al₂0₃=1:99 (1 wt%) とし、必要量の Pt 原料を アルミナの 10 倍量の水に溶解.
- (3) Pt 源水溶液 (Pt (NO₂)₂ (NH₃)₂ の場合は硝酸水溶液)
 にアルミナを入れ、1日放置.
- (4)ホットプレート上で加熱,あるいはロータリーエバ ポレーターを用い排気しながら約 80℃で加熱し水分 を除去.
- (5)110℃で1日乾燥.
- (6)空気中,乾燥空気あるいは希釈酸素流通下,300,400,500℃で3時間加熱.温度は,室温より10℃/minで昇温.ガス流量は,GHSVで500あるいは600.
- (7) 室温より 10℃/min で 400℃まで昇温し, 1 時間水素 により還元.水素流量は GHSV で 100 あるいは 300.

試料数は焼成温度を変えて、9種類用意した. $H_2PtCl_6 を$ 出発物質とするものを HC、 $Pt(NO_2)_2(NH_3)_2$ を出発物質とす るものを DN、次に焼成温度、空気中焼成は A、空気(ある いは希釈酸素)流通下は F として表す. 試料は, HCx00A, HCx00F, DNx00F の各々3 種類である.

アルミナのキャラクタリゼーションは、酸性質を NH₃-TPD および吸着熱測定,表面積と細孔分布の測定を窒素吸着で 行った. Pt/Al₂O₃ については,細孔分布を窒素吸着法,水 銀圧入法で,分散度を CO および H₂ 吸着,H₂-O₂ 滴定,TEM で測定した.還元の過程は未還元処理の試料について H₂ に よる TPR で調べた.アルミナ粒子内の Pt の分布を EPMA で, Pt の状態を XAFS, XPS で調べた.

触媒の活性を比較するため,酸化反応としてプロパンの 燃焼,CO酸化,還元反応としてエチレンの水素化,ナフタ レンの水素化,水素化分解反応として CH₃CCl₃の水素化脱塩 化水素,チオフェンの水素化脱硫,ヘキサンの水素化分解 を行った.

3. 結果と考察

3.1 JRC-AL0-6 の表面性質

担体である JRC-ALO-6 について, NH₃-TPD および吸着熱測 定で表面の酸性質を,窒素吸着法で細孔分布を測定した. その結果,アルミナ表面には NH₃吸着熱 150 kJ/mol 程度の 酸点が存在し,その量は 0.050 mmol/g 程度であった.吸着 熱 80 kJ mol/g 以上を化学吸着とすると,酸量は 0.331 mmol/g であった.細孔はすべて 20 nm 以下に分布していた. 表面積は,156 m²/g とカタログ値(180 m²/g)より若干低 い値であった.

3.2 $Pt/A|_20_3$ のキャラクタリゼーション

Pt 源を溶解した水溶液はいずれも強酸性であるため,含 浸操作時に担体のアルミナの溶解や構造変化が危惧された. そこで担体のPt 担持後の試料ついて,窒素吸着と水銀圧入 法で担体の構造変化を調べたところ,表面積はカタログ値 (180 m²/g)に近い値(165-173 m²/g)であり,細孔径, 細孔分布にも変化は見られず,Pt の含侵による細孔の閉塞 は見られず,調製過程は担体物性に影響しないことが明か となった.また,Pt 含量も所定の値であった.

EPMA で担体粒子内での Pt 分布を調べたところ, HC 試料では表面で濃く DN 試料では表面内部とも均一であった.こ

Sample	Pt dispersion/%								Deviation
-	CO ^{a)}	C0 ^{b)}	CO ^{a)}	CO ^{a)}	H_2^{a}	H_2^{a}	$H_2 - O_2$	Average	
HC300A	82	63	59.3	55.3	_	32.3	60.3	58.7	17.8
HC400A	49	51	49.5	46.9	_	53.2	57.5	51.2	3.6
HC500A	71	66	56.8	52.5	-	54.6	66.7	61.3	7.3
HC300F	85	72	72.0	63.2	70	77.0	59.5	71.2	8.5
HC400F	73	75	63.6	66.8	66	74.8	65.9	69.3	5.7
HC500F	47	83	73.0	65.4	68	74.1	64.5	67.9	12.2
DN300F	42	37	40.3	31.9	42	40.8	40.6	39.2	2.3
DN400F	62	_	68.2	40.9	64	70.3	68.2	62.3	8.3
DN500F	53	62	63.1	43.2	70	50.4	58.3	57.1	7.6

Table 1. Pt dispersion on JRC-ALO-6.

a) Static adsorption method, b) pulse method.

れは、PtCl₆²⁻が酸性溶液中で正に帯電した表面に強く吸着 するためアルミナ粒子内部にまでは拡散しにくく、 Pt(NO₂)₂(NH₃)₂では比較的吸着が弱いため内部まで拡散し たものと考えられる.同時に残留塩素が確認されたが、そ の量は塩素を含まないPt(NO₂)₂(NH₃)₂をPt源とした場合で 0.13%(カタログ値0.2%)であった.H₂PtCl₆を用いて1 wt%で調製した試料では確認していないが、H₂PtCl₆を用い て5 wt%のPtを担持した試料では、1%以上の塩素が残留 していた.

TEM で Pt 粒子の様子を観察したところ, Pt は比較的均一 な粒子で担持され, 粒子径分布は HCx00F で小さいことが確 認された. この傾向は後に述べる吸着によって求めた分散 度の傾向と一致した.

Pt 含侵後の試料に焼成のみを施し、未還元の状態で還元 における水素消費量を H_2 による TPR で測定した.水素消費 量は、DN300F と DN400F 以外は Pt が 4 価から 0 価まで還元 されると仮定して求めた消費量とほぼ一致した.DN300F と DN400F では水素消費量が多く、特に DN300F では 8~10 倍 以上の水素を消費するという結果が得られた.これは、 Pt (N0₂)₂ (NH₃)₂ を Pt 源とする試料では、400℃以下の焼成で

Fig. 1. Fourier transforms of Pt L_{III} -edge EXAFS spectra of Pt/Al₂O₃.

はNOxの分解が不十分であることが原因であり,水素がNOxの還元に消費されるためと考えられる.

XPS, XAFS の測定により水素還元後の試料では担持され た Pt は, ほとんどが 0 価まで還元されていることが明かと なった. XPS では, HCx00A と F で Pt $4d_{5/2}$ のピークが Pt 粒 子径の影響で高エネルギー側にシフトしていた. EXAFS で も, Fig. 1 に示すように Pt はほとんど金属と同定でき¹⁾, 分散度の高い(微粒子化している)試料ほど, Pt-Pt 距離 に収縮が生じるという特徴が見られた.

Table 1 に種々の実験方法で測定した Pt 分散度を示す. 一部の測定は参照触媒委員会推賞の条件^{2,3)}で行っている. 標準偏差を見ると全体に測定方法による測定値の差は少な いことが分かるが、一部には値が大きく異なる試料もあっ た. Pt 分散度は、H_PtCl₆を Pt 源とする試料では HCx00A で低く HCx00F で高い. また両者において Pt 担持後の前駆 体の分解における温度の影響は小さかった. 全体に空気中 での焼成よりも乾燥空気あるいは希釈酸素流通下の方が高 分散となることから気相の水分の影響⁴⁾が考えられ,気相 の水分は充分に除く必要があることが分かる.DNx00Fでは DN300F で極端に低く, DN500F で低下していた. DN300F は 前述の TPR で明かなように、前駆体の分解が不十分である ため低分散度となったものと考えられる. また, DN500F で は加熱により前駆体が凝集したことが考えられ, HCx00F お よびAと比較すると、H2PtCl6をPt源とする試料では残留 している塩素が Pt 粒子の凝集を防いでいることが示唆さ れた 5).

このように,全体として Pt 分散度の測定値は比較的一致 していたが,これ以外の試料では一致しないものが見られ た.Pt 上には吸着エネルギーの異なる数種の C0 吸着種が 存在し⁶,また試料の前処理条件が大きく測定値の影響す ることから,特に還元後の排気処理を十分行う必要がある と考えられる.

3.3 分散度と TOF の関係

Pt の分散度と触媒活性(TOF)を比較するため,酸化反応としてプロパンの燃焼,CO酸化,水素化反応としてエチレンの水素化,ナフタレンの水素化,水素化分解反応としてCH₃CC1₃の水素化脱塩化水素,チオフェンの水素化脱硫,

Fig. 2. TOF of propane combustion as a function of Pt dispersion.

Fig. 3. TOF of ethylene hydrogenation as a function of Pt dispersion.

Fig. 4. TOF of dehydrochloriation of CH_3CCl_3 as a function of Pt dispersion.

へキサンの水素化分解を行った.このうち、プロパンの燃 焼、エチレンの水素化、CH₃CC1₃の水素化脱塩化水素、ヘキ サンの水素化分解は流通系で、C0酸化は閉鎖循環系で、ナ フタレンの水素化はオートクレーブを用いたバッチ式で、 チオフェンの水素化脱硫は、流通系と閉鎖循環系の両者で 行った。

プロパン燃焼反応における分散度とTOFの関係をFig. 2 に示す.これらの間には負の相関が見られ、Pt 源による差 も同時に見られた. Pt 源に塩素を含む HCx00F および A で 低活性であるのは、残留塩素がこの反応を強く阻害する⁷¹ ことから、その影響と考えられる.

C0酸化反応の活性は, Pt の粒子径に強く依存することが 考えられ,この反応でも負の相関が見られるが,この反応 には Pt 源の影響は見られなかった.

エチレンの水素化とナフタレンの水素化でも、分散度と TOFの間には負の相関が見られた.Fig.3は、エチレンの 水素化の初期活性とPt分散度の関係を示したものである が、Pt源の影響は見られない.この反応は流通系で行って いるが、経時変化としては H_2PtCl_6 をPt源とするものは活 性低下が見られるのに対し、Pt(NO_2)₂(NH_3)₂をPt源とする ものは増加する傾向が見られた.

ナフタレンの水素化では、活性、TOF とも $H_2PtCl_6 \varepsilon$ Pt 源とする試料で高く、Pt 源の影響が顕著に見られた.また、HCx00F の方が HCx00A より高活性であるが、TOF で比較する とその差は明瞭ではなかった.

CH₃CCl₃の水素化脱塩化水素では,Pt 源による差は全く見られず,Fig.4に示すように分散度とTOFの関係はすべて一つの曲線の上に分布した.これは、反応により副成したHCl が反応中のPt の再分散に影響するためと考えられる.

チオフェンの水素化脱硫でもPt分散度とTOFの間には負の相関が見られたが、Pt源の影響は閉鎖循環系では見られ ず流通系では見られるという結果が得られた.流通系では、 H₂PtCl₆をPt源とするHCx00Fが高いTOFを示した. ヘキサ ンの水素化分解では、分解生成物の他に異性体でありメチ ルペンタン類が生成した. 異性化も同一活性点で進行⁸⁰す ると考えこれらも含めてみたが、Pt分散度との間に明瞭な 関係は見られなかった. これは、ヘキサンの水素化分解が 構造敏感型の反応であるため、Pt分散度より表面に露出し ている結晶面に影響されるためと考えられる.

本研究は、参照触媒委員会 1999-2001 年度プロジェクト として実施された、参加者の皆さんに感謝したい.

4. 文献

- 1) Y. Yazawa, H. Yishida, and T. Hattori, J. Synchrotron Rad., 8, 560 (2001).
- 2) 参照触媒委員会, 触媒, 28, 41 (1986).
- 3) 参照触媒委員会, 触媒, 31, 317 (1986).
- 4) S. E. Wanke and P. C. Flynn, Catal. Rev., 12, 92 (1975).
- 5) K. Foger and H. Jaeger, Appl. Catal., 56, 137 (1989).
- A. Bourane, O. Dulaurent, and D. Bianchi, J. Catal., 196, 115 (2000).
- 7) P. Marecot, A. Fakche, B. Kellali, G. Mabilon, M. Prigent, and J. Barbier, *Appl. Catal. B*, **3**, 283 (1994).
- 8) K.-C. Park and S.-K. Ihm, Appl. Catal. A, 203, 201 (2000).