1B05 触媒調製の標準化:ゼオライトのイオン交換に (B1) 伴う脱アルミニウム化の制御

片田直伸*·竹口竜弥**

*鳥取大学工学部物質工学科 〒680-8552鳥取市湖山町南4-101

**京都大学大学院工学研究科物質エネルギー化学教室 〒606-8501京都市左京区吉田本町

ゼオライトのNa型から酸型へのイオン交換の過程で,多くの場合に脱Al化が起きるため,得られる試料は研究者によって異なる.モルデナイトでは脱Al化は酸型試料を大気中で保管する際に起き,これを防ぐためには焼成温度を673 K以下にして少なくとも数%のNH4*を残して保管することが必要である.Y型では脱Al化が起きないと酸型試料が大気中で崩壊する.これを防ぐためには,外表面近傍とバルク内部で均一なAl濃度となる脱Al化が必要である.60 %ほどイオン交換したNH4Na-Yをアンモニア・水蒸気存在下で熱処理するとこのような脱Al化が起きる.

[主張したい事項] (1)脱アルミニウム挙動の重要性 (2)モルデナイトにおける脱アルミニウム化抑制法 (3) Y型における骨格の安定化のための脱アルミニウム化法

1. 緒 言

ゼオライトのイオン交換は簡単な操作と思われており, 論文にも詳しく記述されることが少ない.しかし,イオン 交換の操作と条件は触媒活性に強く影響し,これが研究者 間の食い違いの原因となっている場合も少なくないと考え られる.モルデナイトとYゼオライトの2種について参照触 媒Na型を共通の原料に,多くの研究者がNH4型へのイオン 交換とその後の焼成による酸型への転化を行い,試料を交 換して幅広いキャラクタリゼーションと触媒活性の評価を 行った¹⁾.この研究はイオン交換の標準化を目指している が,その過程で見られた興味深い知見を報告する.

2. モルデナイト

JRC-Z-M15 (Si/Al₂ = 15のNaモルデナイト,東ソー製,²⁹Si NMRによると骨格内Si/Al₂比も15)を原料に,完全な酸型を 目指したイオン交換および焼成を行った. ICP, TG, XRD, XPS,窒素吸着,ベンゼン類の拡散測定,²⁹Si,²⁷Al,¹HのNMR, 吸着CO,ピリジンのIR,アンモニアTPD,クメンの分解, ヘキセンの分解,ビフェニルのイソプロピル化,プロペン の低重合,アニリン合成,Pdを担持してNO還元などのキャ ラクタリゼーションおよび反応を行った.紙面の都合上, 重要な結果だけを記す.

初年度は条件をいっさい指定しないでイオン交換と焼成 を各自で行った(M1~M8).

NH₄*源としてNH₄NO₃とNH₄Cl, 溶液濃度は $0.2 \sim 2 \text{ mol dm}^3$, [溶液中のNH₄⁺]/[ゼオライト 中のNa⁺] 仕込み比(以下 NH₄/Na)は $4 \sim 60$ まで幅があり, 洗浄や乾燥方法を含めて様々 な方法が採られた.

結晶性はどの試料でも保た れていた. イオン交換率(1-[Na]/[Al])はほとんどの試料で 99.8%以上であった(Table 1). しかし驚くべきことに東ソー製のM1 (JRC-Z-HM15とし て配布されているもの)を含めた多くの試料でSi NMRから 骨格内Si/Al₂比の増大, Al NMRから6配位Al (Fig. 1), H NMR やIRから酸性OHの減少およびLewis酸の発現,アンモニア TPDからはAl含有量より著しく低い酸量(Fig. 2),といった

脱AI化の証拠が観測された. M7のみAIはほぼすべて同型 置換したまま保たれている ことがわかった. M7はイオ ン交換が1回で若干のNaを 残しており(1 - [Na]/[Al] = 0.96), 一方で焼成温度が低 かった(673 K)ためにNH4+が 残存していた(H NMRで検 知)ことから,脱Al化がNa* あるいはNH₄+の完全な除去 後に起きると推測された. また、当然ではあるが完全 なイオン交換のためには2回 以上繰り返す必要があるこ とが確かめられた.

ー方イオン交換を383 Kで 行ったM5ではブロードなAI NMRスペクトルやアンモニ アTPDプロファイルが観測

Fig. 1: Al NMR spectra of mordenite.

Table 1: Preparation conditions and composition of mordenite.						
Notation	No. of ion- exchange cycle	Ion-exchange	Calc. temp. /	1- [Na]/[Δ]]	Framework Si/Al ₂	
M1	2	313	823	>0.998	20	
M2	2	353	808	>0.998	19	
M3C	3	353	773	>0.998	20	
M5	2	383	823	0.998	40	
M7	1	343	673	0.964	15	
M8	2	353	813	>0.998	20	
M8-24	2	353	673	>0.998	15	
M7-31	2	353	813	>0.998	30	
M7-32	2	353	813 (evac.)	>0.998	30	
M7-34	2	293	813	>0.998	35	

Fig. 2: Ammonia TPD spectra of mordenite.

Fig. 3: Catalytic activity for cracking of cumene and alkylation of biphenyl as a function of framework aluminum content.

され、AIの局所構造が崩壊していることがわかった.

つぎに,脱AI化の原因を特定するために333あるいは353 Kで1回あるいは2回のイオン交換を行い,得られた試料を すべて673 Kで焼成した.他の条件の影響を調べるために 溶液の濃度,イオン交換温度,濾過や乾燥の方法などは初 年度と同じようにさまざまなものを採用した.すべての試 料でM7と同じように数%のNH4⁺が残存し,AIは同型置換し たまま保持されていた(代表例がM8-24)ことから,焼成温度 を673 K以下にして少なくとも数%のNH4⁺を残せば脱AI化を 防止できることがわかった.

アンモニアTPD, IR, 後述の触媒反応は真空あるいは不 活性ガス下での高温(773 K)加熱後に行われているので,

NH₄+残存試料であってもアンモニアの除去 後に*in-situ*測定されていることになる.この ように加熱後にも関わらず,*in-situ*でアンモ ニアを除去した試料では脱AI化の兆候を示 さなかった.一方でNMRなどは室温,大気 中でそのまま測定しているにも関わらず,アンモニア除去後に大気中で保管した試料では脱AI化の兆候を示したことから,高温での処理が直接に脱AI化を起こすわけではなく,アンモニアを除去したH型ゼオライトは大気中で水蒸気によって脱AI化すると考えられる.このような挙動は高AI組成のゼオライトでは知られていた³ことである.アンモニアの除去を真空下813 Kで行ってみたが,脱AI化は防げなかった(M7-32).イオン交換温度を室温まで下げてみたがやはり防げなかった(M7-34).なお,イオン交換自体は室温でも起きることがわかった.

以上をまとめると, Na型モルデナイトのNH₄型へのイオ ン交換は室温から353 Kの温度で起きるので室温で行えば よいこと(高温になると構造破壊が起きるので望ましくな い), NH₄+を少なくとも数%残して保管することが必要で, 完全にアンモニアを除去してから大気に晒すと脱Al化が起 きること, その他の条件は重要でないことがわかった.

脱AI化の起きていないM7やM8-24などではクメン分解, ビフェニルのイソプロピル化に対する触媒活性は高い値で 一定で,脱AI化によって活性が下がる傾向があった(Fig. 3) ことから,前述の調製法が重要であることが示された.た だし脱AI化によって活性が下がらなかったり,やや増大し た場合もあり,骨格外AIが触媒活性に影響し得ることを示 している.

3. Y型ゼオライト

JRC-Z-Y5.3 (Si/Al₂ = 5.3のY型, 触媒化成製)を原料として, 流通しているHY型, すなわちJRC-Z-HY5.3と同じく90 %程 度のイオン交換率となることを目指し,イオン交換および 焼成を行った. NH_4 ⁺源として NH_4NO_3 と(NH_4)₂SO₄,溶液濃 度は0.2~2 mol dm⁻³で,後述のように途中で焼成を行うな ど特徴ある手順が採られた.

1および2年度目はさまざまな条件でイオン交換を行った ところ(Y1~Y5), Y1 (JRC-Z-HY5.3と同等品)以外はXRDで 評価した結晶性やミクロ細孔容積が低下していた(Table 2). Y1では脱AI化が進行しており,Y4では脱AI化が起きていな かったことなどから,単純なイオン交換によって酸型にな ると大気中で不安定となり,イオン交換とともに脱AI化が 起きると安定化される²と考えられる.しかし結晶性は脱AI 化の程度のみによっては決まらず,Fig.4に示したように XPS³⁻⁵)で評価した外表面Si/Al₂比が高い(外表面近傍だけ脱 AI化が著しい)ものほど結晶性が低かった.ただし,異なる

Table 3: Process of preparation of Y1

Notation	Framework	External sur-
	Si/Al ₂	face Si/Al ₂
NaY (JRC-Z-Y5.3)	5.3	5.0
Y1-A (NH_4Na -Y, NH_4 : $Na = 6$: 4, supplied by	12	5 /
Catalyst & Chemicals Ind.)	4.5	5.4
Y1-B (Y1-A calcined at 823 K in air by CCI)	6.6	6.4
Y1-C (NH ₄ -Y exchanged from Y1-B by CCI)		
Y1 (Y1-C calcined at 823 K by CCI)	7.8	3.1
Y1-a (NH ₄ Na-Y, NH ₄ : Na = 6 : 4, in small scale)	<i>ca</i> . 5	2.8
Y1-b1 (Y1-A calcined in air and small scale)	4.6	8.9
Y1-b2 (Y1-A calcined in H_2O + air)	4.8	9.4
Y1-b3 (Y1-A calcined in $NH_3 + H_2O + air$)	6.1	5.9

Table 2: Properties of Y zeolite.

Notation	XRD intensity*	Framework Si/Al ₂
Y1	1.04	7.8
Y2	0.26	6.2
Y3	0.91	7.8
Y4	0.72	5.4
Y5	0.44	7.0

*: Normalized by the intensity of NaY as 1

Fig. 4: Plots of crystallinity against the composition of external surface of Y zeolite.

原料NaYからイオン交換を行った場合,外表面Si/Al₂比が高 いものほど安定性が高かった³ことから,外表面Al濃度が 直接に安定性を決めているわけではなく,本研究の範囲で は結晶全体を均一に脱Al化すると安定性が高くなると考え られる.

そこで、骨格内と外表面のAl濃度に着目してY1の調製過 程を追跡した(Table 3). Y1は、NaYを60 %程度イオン交換 (NH₄/Naを0.9として行う)してからいったん813 Kで焼成し、 再度イオン交換、焼成して得られる. 1回目イオン交換後 のY1-Aでは脱Al化は起きておらず、これを焼成したY1-B で脱Al化が起きていた(Table 3). 1回目焼成によってAl NMR では6配位種が現れ(Fig. 5)、アンモニアTPDでは酸量が減少 し(骨格内Alの減少を示す)高温側に強い酸点(骨格外Alの影 響を示す)のピークが見られた(Fig. 6). Y1-Bの外表面Si/Al₂ 比は骨格と同程度に保たれていたことから、この1回目の 焼成時に、Y1の特徴である、外表面近傍とバルク内部で均 ーな脱Al化が起きたと考えられる.

NH₄/Naを0.9として1回目のイオン交換を別の研究者がトレースしたところ、スケールおよびいくつかの条件を変えても影響は小さく、脱AI化も起きなかった(Y1-aがその代表例)ことから、1回目のイオン交換は単純な工程で、NH₄/Naを0.9として行えばよいことがわかった.

Y1-AからBへの1回目の焼成は数kgのスケールで大気中で 行われている.数十gのスケール,大気中で同じ温度・時 間の焼成を行うと(Y1-b1)骨格Si/Al₂比はほとんど増加せず, 外表面Si/Al₂比のみ増加したことから,均一な脱Al化は起き なかったと考えられる.そこで焼成時に試料から発生する 水蒸気が影響すると考え,300 kPa程度の水蒸気を含む空気 流中で焼成したが(Y1-b2),骨格内Si/Al₂比の増加はわずか で,外表面の脱Al化が進行した.アンモニウム型ゼオライ トの焼成時にはアンモニアも発生することから,アンモニ アと水蒸気を含む空気流中(10 wt%アンモニア水をバブリン グ.分圧は制御されていない)で焼成したところ(Y1-b3), 骨格内Si/Al₂比はY1-Bに近くなり,骨格内と外表面のSi/Al₂ 比もほぼ等しかった.

詳細は省くが、2回目の焼成は小スケールで行っても得られる物性に大差ないことがわかった.

以上から, HYゼオライトの安定性を支配するのは1回目 の焼成で, アンモニアと水蒸気が共存する環境でこの焼成

Fig. 6: Ammonia TPD spectra of Y zeolite.

を行うことが重要であることがわかった.

4. 謝辞

本研究は触媒学会参照触媒委員会の共同研究プロジェクトとして、多数の研究者の献身的なご協力によって行われた.紙面の都合上ご氏名を挙げることができないので、資料¹⁾を参照されたい.深く謝意を表する.

5. 文 献

1) 触媒学会参照触媒委員会, 第20~22回参照触媒討論会資料 (1999) ~ (2001).

2) N. Katada, Y. Kageyama and M. Niwa, J. Phys. Chem., B, 104, 7561 (2000).

3) 放射光によるXPS^{4, 5)}で外表面の極めて近傍の組成を測定 した.

4) K. Sato, Y. Nishimura, K. Honna, N. Matsubayashi and H. Shimada, J. Catal., 200, 288 (2001).

5) 佐藤, 西村, 松林, 今村, 島田, 88 触討A 予稿集, 241 (2001).